
 

 

 

 

 

OMRTN  Protocol: Consensus and Security

Oort Founding Team ∗

Abstract

In this paper,
we build up the mathematical foundations of OMRTN  Protocol ,
which advanced the directed acyclic graph (DAG)
for storing transactions. OMRTN    -has superior performance such as
high throughput and almost-zero transaction fees. The nature of its 

original architecture enables the flexibility and capability of chain inter-
operability with all other layer-1 blockchains, which is the foundation 

for building a Web3 data infrastructure. We provide thorough and 

rigorous analysis on our consensus mechanism which depends on non-
anonymous reputable entities, called committees. Our scheme allows 

committees to be replaced to achieve higher level of decentralization.
The security of OMRTN      - Protocol against malicious behaviors is guar-
an teed.

1 Introduction

The concept of blockchain as an independent technology began to surge
in 2015. Prior to this, it was known as the data structure of Bitcoin. In
Nakamoto’s white paper [1], the two words “block” and “chain” appear to-
gether, but it only refers to “a series of blocks.” With the popularity of Bit-
coin, the technology and concepts in Bitcoin is often classified as Blockchain
1.0. With Ethereum [2] running as a platform for distributed applications,
people began to classify Ethereum as Blockchain 2.0. Now the market is
vying for the fundamental structure for a new paradigm of Internet infras-
tructure, interoperability and scalability, i.e., Blockchain 3.0. Many people
think that directed acyclic graph (DAG) structure is one of the best candi-
dates.

In traditional blockchain technology represented by Bitcoin and Ethereum,
blocks and transactions are two separate concepts. A transaction is con-
firmed by the miners and packed into a block, and the throughput in terms

∗Oort was formerly called “Computecoin Networks”. Please visit our official website
to stay up-to-date on our progress, and to view the latest version of this technical paper.
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of transactions per second (TPS) is limited by the block size and the block
generation speed. In addition, miners in the blockchain system have the right
to decide the content of the block. The profit-seeking behavior of the min-
ers can easily lead to excessive concentration of power or voting rights, thus
losing the decentralization characteristics. DAG-based distributed ledger
technology (DLT) was created to solve these problems. Compared to tradi-
tional blockchain technology, DAG-based DLT has the following advantages:
1) Strong scalability (high TPS); 2) Fast transaction speed; 3) (Almost) no
transaction fee and friendly to small payments; 3) No requirement for special
miners to participate.

The idea of using DAGs in the cryptocurrency space has been around
for a while. DAGLabs has proposed a series of consensus protocols, such as
Inclusive [3], SPECTRE [4] and PHANTOM [5]. The general idea behind
them is to utilize a DAG of blocks. Also the miners in the system still com-
pete for transaction fees, and new tokens may be created by these miners.
Instead, some cryptocurrencies depend on a DAG of individual transactions
other than blocks. IOTA [6] and Byteball1 [7] are among the oldest and
most representative projects. They both have the same advantages using
a DAG structure, but have quite different design details in order to cater
to different audiences. IOTA assigns a certain weight to each transaction,
and the transaction is generated through the proof of work (PoW) mech-
anism. Instead of utilizing PoW, Byteball prevents junk transactions by
charging a small fee, and introduces votes from committees to determine
valid transactions.

Similar to IOTA and Byteball,
transactions in OMRTN are stored and or-ganized in a DAG structure.
However, we impose some additional rules,
which results in a special DAG called OMRTN  directed acyclic graph
(OMRTN  -DAG). Consensus in our OMRTN  -
DAG is achieved through committees, whichare non-
anonymous reputable entities. It is a Byzantine Fault Tolerant (BFT)
consensus protocol which can tolerate malicious behaviors. Since
the FLP impossibility result [8] has demonstrated the impossibility of dis-
tributed consensus in an asynchronous environment, we assume one of the 

two forms of partial synchrony defined in [9]. That is, the upper bound 

on the time required for a message to be delivered is fixed but not known 

a priori. The main advantage of our consensus algorithm, compared with 

the state-of-the-art BFT protocols such as PBFT [10] and Tendermint [11],
is t1he exclusion of additional messages for voting purpose. It significantly 

reduces the communication overhead, which in turn alleviates the scaling

Byteball project has been renamed as Obyte.
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Figure 1: Example of consensus in OMRTN  -DAG structure

 

 

 

 

 

 

issues to achieve higher TPS.
The remainder of the paper is organized as follows.

The OMRTN - DAGstructure is presented in Section 2.
The proposed consensus algorithm isdescribed in Section 3.
Section 4 rigorously proves the correctness of our consensus protocol,
including both safety and liveness properties.

2 OMRTN  -DAG

In OMRTN  , each block represents one transaction,
which contains references to previous blocks (called parents)
through their hashes. Blocks and theirparent-
child links are the vertices and edges of the DAG, respectively. As 

depicted in Fig. 1, our OMRTN  -DAG structure has two layers,
namely the con-sensus layer and the transaction layer.

All blocks in the consensus layer are composed by some non-anonymous
reputable people or companies, called committees, who might have a long
established reputation, or great benefits in keeping the network healthy.
Each block in the consensus layer can reference multiple blocks from both
the consensus layer and the transaction layer. committees are expected to
post transactions frequently and behave honestly. However, it is unreason-
able to totally trust any single committee. Our proposed scheme allows
committees to be replaced without jeopardizing the consensus and security
in the network. Details on how to change committeees will be elaborated
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in Section 3. Transactions in the consensus layer is for the sole purpose of
achieving consensus in the network, while real transactions happen in the
transaction layer. In the transaction layer, each account has its own chain
of blocks, which records the transaction history of this account. In addition,
each block in the transaction layer is referenced by blocks in the consensus
layer.

The consensus in the computecoin network is achieved via total ordering
of all blocks. Each node starts by finding out the “stable” main chain within
the consensus layer of its local DAG. The rigorous definition of stable main
chain will be described later in Section 3.1. Each node then numbers all
blocks included by blocks on the stable main chain as follows. It first defines
indices for blocks that lie directly on the stable main chain. The genesis
block has index 0, the next block on the stable main chain that is a child
of the genesis block has index 1, and so on. By traveling forward along the
stable main chain, it assigns indices to blocks that lie on the stable main
chain. For any block that does not lie on the stable main chain, its index
is assigned by the index of the block on the stable main chain that first
references it directly or indirectly. Now each node can determine the order
for any two blocks B1 and B2 with assigned indices using the following rule
O: B1 precedes B2 if and only if

a) B1 has lower index than B2; or

b) B1 and B2 have the same indices, but B1 is referenced by B2 directly
or indirectly; or

 

c) B1 and B2 have the same indices, and there is no reference relationship
between B1 and B2, but B1 has lower hash than B2.

As a concrete example shown in Fig. 1, a node is trying to decide the
order of two blocks B1 and B2 marked in blue. The stable main chain it
finds out is marked in bold arrows. And the numbers inside each block
are indices assigned according to the stable main chain. Now block B1 has
index 3 and block B2 has index 4. Therefore, the node will determine that
B1 precedes B2 since B1 has lower index than B2.

3 Consensus in OMRTN  

In this section, we will focus on the consensus layer of our OMRTN  -
DAG struc-ture, and explain in detail how a node finds out the stable m 

ain chain of its local graph. The remainder of this section is organized as 

follows. The

4



key terms which will be used intensively throughout the paper are described
in Section 3.1. In Section 3.2, we list the key assumptions we rely on in
order to guarantee that the computecoin network is secure. Based on the
definitions and assumptions, Section 3.3 presents the consensus algorithm
which is implemented in the computecoin mainnet.

3.1 Definitions

At any time, each node in the network would observe slightly different graph
due to network delay. Let Gn(t) denote the graph node n has observed at
time t. In this section, we drop n and t and use G to represent a general
DAG which satisfies that if a block B is in G, all B’s parents are also in G.
In the following, we describe some key terms which will be used intensively
in the subsequent sections.

D1 Graph inclusion relation: We use G ⊆ G∗ to represent that G∗ contains
all blocks in G, and G∗ satisfies the condition that if a block B is in
G∗, all B’s parents are also in G∗.

D2 Block inclusion relation: We say a block B1 includes another block B0

if B1 = B0 or B1 references B0 directly or indirectly.

D3 Block comparison: Suppose each block in G has its epoch, level and
hash, where the definitions of epoch and level will be discussed in D6
and D7, respectively. For any pair of blocks B0 and B1, we call B1 is
better than B0 if and only if B1 has larger epoch, or larger level if B0

and B1 have the same epoch, or larger hash in the case that B0 and B1

have the same epoch and the same level. We denote this comparison
rule as R.

D4 Best Parent: The best parent of a block is one of its parents, which is
the best under block comparison rule R. The best parent of a block
B is denoted by bp(B).

D5 Block height: The height of a block B, denoted by h(B), refers to the
length of the path from B to the genesis block through best parent
links. Note that the height of the genesis block is 0.

D6 Epoch: The system moves through a succession of configurations called
epochs. In each epoch, there is a different set of committees, denoted
by Wi. Let Ni denote the number of committees in Wi and Ki =⌊
2
3Ni

⌋
+1. We represent the set of all nonnegative integers as a union
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of disjoint consecutive integer sequences, i.e., N∪{0} =
⋃∞

i=1 Ii, where
Ii is a consecutive integer sequence ranging from ai to bi. Here, all
the numbers in Ij is larger than those in Ii for any j > i, i.e., aj > bi.
The epoch a block B belongs to is determined by which interval the
height of the last stable block (defined later in D10) of B’s best parent
falls in. Specifically, if the height of the last stable block of bp(B) is
in Wi, the epoch of block B, denoted by ep(B), is i.

D7 Block level: The level of a block B, denoted by lv(B), is defined as
follows:

lv(B) =


0, if B is the genesis block,

1, if ep(B) > ep
(
bp(B)

)
,

lv
(
bp(B)

)
+ 1, if ep(B) = ep

(
bp(B)

)
.

(1)

D8 Main chain: The main chain of graph G is defined as the path starting
from the best tip block in G under block comparison rule R to the
genesis block through best parent links. Here, tip blocks refer to blocks
without any child.

D9 Stable block: A block on the main chain of G is called a stable block
of G if it is guaranteed to be contained in the main chain of any graph
G∗ that includes G, i.e., G ⊆ G∗.

D10 Last stable block: The last stable block of the genesis block is itself.
Now for a block B1, given that the last stable block of its best parent
is defined, the last stable block of B1 is determined by the following
procedure. For any two blocks B and B∗, we use B∗ → B to denote
that B∗ includes B through parent links and all blocks in the path
(including both B∗ and B) must be in the same epoch. Similarly,

we use B∗ b−→ B to denote that B∗ includes B through best parent
links and all blocks in the path need not be in the same epoch. The

degenerated case of B = B∗ is regarded true, i.e., B∗ → B and B∗ b−→
B. For any block B0 such that B1

b−→ B0, let C(B0, B1) denote the set
of blocks from B1 to B0 through best parent links, which includes B1

but not B0. Assume ep(B1) = i. Start with B0 = lsb
(
bp(B1)

)
, and

check whether the following condition holds

lv(B1) > max
B∈S(B0,B1)

lv(B) + 2(Ki − 1), (2)
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Figure 2: One step in finding out the last stable block of B1. Solid and
dashed lines represent parent-child links and ancestor-descendant links, re-

spectively. Bold and regular lines represent
b−→ and → relations, respectively.

where S(B0, B1) =
{
B
∣∣B b−→ B0, B1 → B,C(B0, B)

⋂
C(B0, B1) = Ø

}
.

If S(B0, B1) = Ø, the maximal value over S(B0, B1) in (2) is set to be
0. If the condition (2) holds, update B0 to be its child on C(B0, B1)
and go back to check the condition (2) again, and so on. We repeatedly
advance B0 till h(B0) ∈ Ii+1 or B1 does not satisfy the condition (2)
with respect to B0. The block B0 we stop at is the last stable block
of B1, denoted by lsb(B1). One advancement of B0 described above is
depicted as the blue arrow in Fig. 2.

D11 Stable main chain: From the last stable blocks of all blocks in G, we
pick the one with the largest height, denoted by SB(G). The stable
main chain of G, denoted by SC(G), is then defined as the chain of
blocks starting from SB(G) to the genesis block through best parent
links. Note that the stable main chain of G is part of the main chain
that will not change as G expands.

D12 Main chain index (MCI): The MCI for any block that lies directly on
the stable main chain is equal to its height. For any block that does
not lie on the main chain, its MCI is assigned by the MCI of the block
on the stable main chain that first includes it. The MCI of a block B
is denoted by mci(B).

Many definitions above depend on each other. However, they can be
incrementally built up as the DAG grows. To start with, the genesis block
belongs to epoch 0, has level 0 and its last stable block is itself. For a new
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block B added to the graph, assume that all terms for its parents are already
well defined. We first find out its best parent bp(B) via block comparison
rule R. Next, we find out its epoch ep(B) by checking the height of the
last stable block of bp(B). B’s level lv(B) can then be determined by (1).
And the last step is to find out the last stable block of B, i.e., lsb(B) by the
procedure described in D10. After that, we will know whether the stable
main chain of the graph has been extended or not.

3.2 Assumptions

The key assumptions used in OMRTN  
consensus protocol and subsequent tech-nical discussions are as follows:

A1 Honest committees should generate blocks serially. In other words,
each honest committee should reference (directly or indirectly) all its
previous blocks in every subsequent block.

A2 When an honest committee composes a block, he always chooses the
best tip block of its local graph under block comparison rule R as the
best parent of this new block.

A3 If a block is in epoch i, the issuer of this block must be in the committee
set Wi.

A4 Start from any block in epoch i and traverse through best parent
links, we stop as soon as we encounter Ki blocks or a block of level
1, whichever comes first. Each block we encountered (including the
one we stop at) must be issued by a different committee from the
committee set Wi.

A5 In each epoch i, more than 2/3 of the committees in Wi are honest. In
other words, at least Ki committees are honest, where Ki =

⌊
2Ni

⌋
3 +1

is defined in D6.

A6 Any block will be delivered to all honest committees within some fixed
but unknown amount of time. It implies that for honest commit-
tees, the graphs they eventually observe would be consistent with each
other. That is to say, for any pair of honest committees i and j, the
graph Gi(ti) node i observed at time ti will also be observed by node
j at some time tj , i.e., Gi(ti) ⊆ Gj(tj).

The assumptions from A1 to A4 are also constraints that need to be
satisfied when a committee issues a block. Among those, however, only A3
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and A4 are binding. That is to say, other committees can perform certain
sanity check on A3 and A4, and reject the block if either of these two condi-
tions is not met. Note that assumption A6 is a form of partial asynchrony [9],
which is a middle ground between synchrony and asynchrony.

3.3 Consensus Algorithm

Based on the definitions and assumptions above, the consensus algorithm 

implemented in OMRTN i s summarized in Algorithm 1. The key idea is on
ho wto consistently expand the local graph when receiving a block. For cons
ens uspurpose, we only need to deal with blocks issued by committees and
upd ate the stable main chain accordingly, since only those blocks can contr
ibut e to the consensus of the system.

4 Correctness

This section provides the technical proofs to show that the consensus algo-
rithm described in Algorithm 1 is correct. Section 4.1 provides some useful 
propositions that will be used in the subsequent sections. In Section 4.2,
we show that the advance of last stable block defined in D10 guarantees 

that the last stable block is indeed stable. Section 4.3 and Section ?? are 

dedicated to prove that our consensus algorithm satisfies safety and live-
ness properties, respectively. Note that in this section, we still focus on the 

consensus layer of our OMRTN  -DAG structure.

4.1 Propositions

Recall that for any two blocks B and B∗, B∗ → B denotes that B∗ includes
B through parent links and all blocks in the path (including both B∗ and

B) are in the same epoch. Similarly, B∗ −→b B denotes that B∗ inlcudes B
through best parent links and all blocks in the path are not necessarily in
the same epoch. In the following, we prove some useful results which will
be used in later analysis.

Proposition 1. For any two blocks B0 and B1, if B0 = bp(B1), we have

lsb(B1) −→
b

lsb(B0), and ep(B1) = ep(B0) or ep(B1) = ep(B0) + 1.

Proof. It can be directly inferred from how the last stable block is deter-
mined as described in D10. To find the last stable block of B1, we start
with B∗ = lsb(B0), and update B∗ to be its child in C(B∗, B1) in each step
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Algorithm 1 OMRTN  Consensus Algorithm

1: Input: Local graph G = {G} for some node, where G is the genesis block
2: Initialization: Set ep(G) = 0, lv(G) = 0, lsb(G) = G.
3: Main iterations:
4: for all received block B1 do

if B1 does not pass the sanity checks then
Reject block B1.
Continue

end if
if At least one of B1’s parent is not in G then

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

Add block B1 into a buffer for future consideration.
Continue

end if
if B1 is not issued by a committee then

17:

Continue
end if
Determine B1’s best parent bp(B1) by block comparison rule R.
Determine B1’s epoch ep(B1) by checking which interval the height of
lsb

(
bp(B1)

)
falls in. Assume the interval is Ii, i.e., ep(B1) = i.

if Assumptions A3 or A4 is not satisfied then
Reject block B1.
Continue

end if
Add B1 to G, and determine B1’s level lv(B1) according to (1).
Set B0 = lsb

(
bp(B1)

)
.

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

while The condition (2) holds do

28:

Update B0 to be its child in C(B0, B1).
end while
Set lsb(B1) = B0.
if lsb(B1) has larger height than the tip block of the existing stable
main chain then
Update the stable main chain SC(G) to end with SB(G) = lsb(B1).

end if
Find out MCIs of all blocks that are included by any block on SC(G

29:

30:

31: ).
32: end for
33: Output: Linear ordering of all blocks that are included by any block on

SC(G) using rule O.
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as long as B1 satisfies the condition (2) with respect to B∗. It guaran-
tees that in every step, the new B∗ references the old one through the best

parent link. Therefore, we have lsb(B1)
b−→ lsb(B0). Assume ep(B0) = i,

i.e., h
(
lsb

(
bp(B0)

))
∈ Ii. To find the last stable block of B0, the block we

stop at, i.e., lsb(B0) must satisfy that h
(
lsb(B0)

)
is still in Ii or in Ii+1.

It follows that ep(B1) = i or i + 1, which leads to ep(B1) = ep(B0) or
ep(B1) = ep(B0) + 1.

Proposition 2. For any two blocks B0 and B1, if B1 includes B0, we have
ep(B1) ≥ ep(B0).

Proof. The statement is true for the trivial case B0 = B1. Now we assume
that B0 ̸= B1. First, we show that if B0 is a parent of B1, ep(B1) ≥ ep(B0)
holds. Consider the following two cases.

1) B0 is the best parent of B1: We have lsb(B0)
b−→ lsb

(
bp(B0)

)
by Propo-

sition 1. It follows that h
(
lsb(B0)

)
≥ h

(
lsb

(
bp(B0)

))
. Thus, there ex-

ists i ≥ j such that h
(
lsb(B0)

)
∈ Ii and h

(
lsb

(
bp(B0)

))
∈ Ij . There-

fore, ep(B1) = i ≥ j = ep(B0).

2) B2 ̸= B0 is the best parent of B1: Similarly as in the previous case,
we have ep(B1) ≥ ep(B2). According to the definition of best parent,
B2 is better than B0 under block comparison rule R. It implies that
ep(B2) ≥ ep(B0). Therefore, we have ep(B1) ≥ ep(B2) ≥ ep(B0).

For the general case that B1 does not directly reference B0, we can apply
the chain rule to show that ep(B1) ≥ ep(B0).

Proposition 3. For any two blocks B0 and B1, if B1 → B0, we have
lv(B1) ≥ lv(B0).

Proof. The statement is true for the trivial case B0 = B1. Now we assume
that B0 ̸= B1. First, we show that if B0 is a parent of B1, lv(B1) ≥ lv(B0)
holds. Consider the following two cases.

1) B0 is the best parent of B1: Since B0 and B1 are in the same epoch
by the definition of B1 → B0, we have lv(B1) = lv(B0) + 1 > lv(B0)
by (1).

2) B2 ̸= B0 is the best parent of B1: According to the definition of best
parent, B2 is better than B0 under block comparison rule R. It implies
that ep(B2) ≥ ep(B0). It follows that

ep(B2) ≥ ep(B0)
(a)
= ep(B1)

(b)

≥ ep(B2), (3)
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where (a) is by the definition of B1 → B0 and (b) is by Proposition 2.
Thus, the following condition holds: ep(B0) = ep(B1) = ep(B2).
Therefore, we have

lv(B1)
(a)
= lv(B2) + 1

(b)

≥ lv(B0) + 1 > lv(B0), (4)

where (a) is by (1) and (b) is due to the fact that lv(B2) ≥ lv(B0) since
B2 is better than B0 under R but ep(B0) = ep(B2).

For the general case that B1 does not directly reference B0, we can apply
the chain rule to show that lv(B1) ≥ lv(B0).

The following is a direct corollary of Proposition 2 and Proposition 3.

Corollary 1. For any two blocks B0 and B1, if B1 includes B0 and ep(B1) =
ep(B0), we have B1 → B0 and lv(B1) ≥ lv(B0).

4.2 Advance of Last Stable Block

Let GB denote the induced graph from a block B in G which consists of all
blocks that B includes. In this section, we will analyze the procedure to
determine the last stable block of B, i.e., lsb(B). Our main goal is to show
that lsb(B) is a stable block of graph GB. Recall that from Assumption A4,
if we start from block B in epoch i, traverse through best parents links, and
stop as soon as Ki blocks or a block of level 1 has been visited, all blocks
encountered must be issued by different committees from the committee set
Wi. Let T(B) and W(B) denote the set of blocks encountered and the set
of committees who issue these blocks, respectively. Note that all blocks in
set T(B) are in the same epoch as B. In the following, we first prove three
lemmas which are crucial for the proof of our claim.

Lemma 1. If B1
b−→ B0, all blocks in C(B0, B1) are in epoch i and none

of them is issued by an honest committee from a set W ⊆ Wi which con-
sists of Ki committees, then C(B0, B1) contains at most Ki − 1 blocks, i.e.,
|C(B0, B1)| ≤ Ki − 1.

Proof. Since all blocks in C(B0, B1) are issued by committees from set Wi

and none of them is issued by an honest committee from W, they can only
be issued by Ni−Ki committees outside W and malicious committees inside
W, which is at most Ni −Ki by Assumption A5. Thus, due to Ki >

2
3Ni
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Figure 3: The case ep(B0) = i. Solid and dashed lines represent parent-
child links and ancestor-descendant links, respectively. Bold and regular

lines represent
b−→ and → relations, respectively.

in assumption A5, the number of distinct committees which have issued at
least one block in C(B0, B1) is at most

2(Ni −Ki) <
2

3
Ni < Ki . (5)

It then follows from Assumption A4 that |C(B0, B1)| < Ki, which is equiv-
alent to |C(B0, B1)| ≤ Ki − 1. It completes the proof of Lemma 1.

Lemma 2. If B1
b−→ B0, ep(B1) = i and B1 satisfies the condition (2)

with respect to B0, for any block B2 such that ep(B2) = i, B2
b−→ B0 and

C(B0, B2)
⋂
C(B0, B1) = Ø, we have lv(B2) < lv(B1).

Proof. Since ep(B0) ≤ eq(B1) = i by Proposition 2, in the following we
consider two cases, namely ep(B0) = i or ep(B0) < i.

First, consider the case ep(B0) = i. It means that S(B0, B1) ̸= Ø since
B0 ∈ S(B0, B1). We start from B2, traverse through best parent links till
B0, and stop as soon as a block in S(B0, B1) is encountered. Let B3 denote
the block we stop at, i.e.,

B3 = argmax
B∈(C(B0,B2)

⋃
{B0})

⋂
S(B0,B1)

lv(B). (6)
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We show that no block in C(B3, B2) is issued by any honest committee
from set W(B1). It is proved by contradiction. Assume there are blocks in
C(B3, B2) issued by honest committees from W(B1). Among those, let B4

denote the one with the smallest height. As shown in Fig. 3, let B5 denote
the block in set T(B1) which comes from the same committee asB4. SinceB4

and B5 come from the same honest committee, by Assumption A1, either B4

includes B5 or B5 includes B4. Since B2 includes B3 and ep(B2) = ep(B3) =
i, we have ep(B4) = i by Corollary 1. Similarly, we have ep(B5) = ep(B1) =
i. Therefore, by Corollary 1, either B4 → B5 or B5 → B4 holds. However,
by the definition of B3 in (6), which is the first block included by B1 when
traversing from B2 through best parent links, it is impossible that B5 → B4.

Thus, we have B4 → B5. Let B6 and B7 be parents of B4 such that B4
b−→

B6 and B7 → B5, respectively. Since ep(B2) = ep(B3) = i, all blocks in
C(B3, B6) are in epoch i by Corollary 1. By the definition of B4, no block in
C(B3, B6) is issued by any honest committee from W(B1). In addition, the
cardinality of W(B1) is Ki since B1 satisfies the condition (2), which implies
that lv(B1) > Ki. Therefore, by Lemma 1, we have |C(B3, B6)| ≤ Ki − 1,
which leads to

lv(B6) ≤ lv(B3) + (Ki − 1) . (7)

Now the following chain of inequalities hold

lv(B7)
(a)

≥ lv(B5)
(b)

≥ lv(B1)− (Ki − 1)
(c)
> lv(B3) + (Ki − 1)

(d)

≥ lv(B6), (8)

where (a) is by Proposition 3, (b) is due to B5 ∈ T(B1), (c) is by the fact
that B3 ∈ S(B0, B1) and B1 satisfies the condition (2) with respect to B0,
and (d) is by (7). It contradicts with the fact that lv(B6) ≥ lv(B7) since
B6 is the best parent of B4 and ep(B6) = ep(B7) = i. It completes the
proof that no block in C(B3, B2) is issued by any honest committee from

W(B1). In addition, B2
b−→ B3 and all blocks in C(B3, B2) are in epoch i, by

Lemma 1 we have |C(B3, B2)| ≤ Ki − 1, which leads to

lv(B2) ≤ lv(B3) + (Ki − 1) . (9)

It follows that

lv(B1)
(a)
> lv(B3) + 2(Ki − 1)

(b)

≥ lv(B2) + (Ki − 1) ≥ lv(B2), (10)

where (a) is by the fact that B3 ∈ S(B0, B1) and B1 satisfies the condition (2)
with respect to B0, and (b) is by (9). It competes the proof that lv(B2) <
lv(B1) if ep(B0) = i.
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Figure 4: The case ep(B0) < i. Solid and dashed lines represent parent-
child links and ancestor-descendant links, respectively. Bold and regular

lines represent
b−→ and → relations, respectively.

Next, we consider the case ep(B0) < i. If S(B0, B1) ̸= Ø, we can follow
the same arguments as in the previous proof to show that lv(B2) < lv(B1).
Now we assume S(B0, B1) = Ø. Since ep(B2) = i > ep(B0), by Propo-
sition 1, there exits a block B3 ∈ C(B0, B2) such that ep(B3) = i and
ep
(
bp(B3)

)
= i − 1, i.e., lv(B3) = 1. Similarly as in the previous case,

we show that no block in C
(
bp(B3), B2

)
is issued by any honest committee

from set W(B1). It is also proved by contradiction. Assume there are blocks
in C

(
bp(B3), B2

)
issued by honest committees from W(B1). Among those,

let B4 denote the one with the smallest height. As shown in Fig. 4, let
B5 denote the block in set T(B1) which comes from the same committee
as B4 . Since B4 and B5 come from the same honest committee, by As-
sumption A1, either B4 includes B5 or B5 includes B4. Since B2 includes
B3 and ep(B2) = ep(B3), we have ep(B4) = i by Corollary 1. Also we
have ep(B5) = ep(B1) = i. Therefore, by Corollary 1, either B4 → B5 or
B5 → B4 holds. However, it is impossible that B5 → B4 since it is assumed
that S(B0, B1) = Ø. Thus, we have B4 → B5. Let B6 and B7 be parents of

B4 such that B4
b−→ B6 and B7 → B5, respectively. If B4 = B3, we have

ep(B6) = ep
(
bp(B3)

)
= i− 1 < i = ep(B5) ≤ ep(B7), (11)

where the last inequality is due to Proposition 2. It contradicts with the
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fact that B6 is the best parent of B4. If B4 ̸= B3, by the definition of B4,
no block in C

(
bp(B3), B6

)
is issued by any honest committee from W(B1).

And all blocks in C
(
bp(B3), B6

)
are in epoch i. Therefore, by Lemma 1, we

have |C
(
bp(B3), B6

)
| ≤ Ki − 1, which leads to

lv(B6) ≤ Ki − 1 , (12)

since lv(B3) = 1. In the following, we derive a similar chain of inequalities
as (8):

lv(B7)
(a)

≥ lv(B5)
(b)

≥ lv(B1)− (Ki − 1)
(c)
> Ki − 1

(d)

≥ lv(B6), (13)

where (a) is by Proposition 3, (b) is due to B5 ∈ T(B1), (c) is by the fact
that B1 satisfies the condition (2) which implies lv(B1) > 2(Ki−1), and (d)
is from (12). It contradicts with the fact that lv(B6) ≥ lv(B7) since B6 is
the best parent of B4 and ep(B6) = ep(B7) = i. It completes the proof that
no block in C

(
bp(B3), B2

)
is issued by any honest committee from W(B1).

In addition, B2
b−→ bp(B3) and all blocks in C

(
bp(B3), B2

)
are in epoch i, by

Lemma 1 we have |C
(
bp(B3), B2

)
| ≤ Ki − 1, which leads to

lv(B2) ≤ Ki − 1 , (14)

since lv(B3) = 1. It follows that

lv(B1)
(a)
> 2(Ki − 1)

(b)

≥ lv(B2) + (Ki − 1) ≥ lv(B2), (15)

where (a) is by the fact that B1 satisfies the condition (2) which implies
lv(B1) > 2(Ki − 1), and (b) is by (14). It competes the proof that lv(B2) <
lv(B1) if ep(B0) < i.

By combining the two cases above, we finish the proof of Lemma 2.

Lemma 3. Given i ∈ N, assume lsb(B) is a stable block of graph GB for

any block B with ep(B) < i. If B1
b−→ B0, ep(B1) = i, h(B0) ∈ Ii and

B1 satisfies the condition (2) with respect to B0, for any block B2 such that

B2
b−→ B0 and C(B0, B2)

⋂
C(B0, B1) = Ø, we have ep(B2) ≤ ep(B1).

Proof. According to the procedure of determining the last stable block

in D10, we have B2
b−→ lsb(B2). Since B2

b−→ B0, either B0
b−→ lsb(B2) or

lsb(B2)
b−→ B0 holds. We show that B0

b−→ lsb(B2). It is proved by contra-

diction. Suppose lsb(B2)
b−→ B0 and lsb(B2) ̸= B0, which means that the
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last stable block of B2 has advanced past B0. Thus, there exists some block
B3 ∈ C(B0, B2) such that B3 satisfies the condition (2) with respect to B0,
i.e.,

lv(B3) > max
B∈S(B0,B3)

lv(B) + 2(Kj − 1), (16)

where j = ep(B3) ≤ ep(B2) = i by Proposition 2. And the last stable
block of B3 has advanced past B0, i.e., lsb(B3) ∈ C(B0, B2). Consider the
following two cases.

1) j < i: Let G∗ = GB3
⋃
GB1 . Since ep(B3) < ep(B1), B1 is the tip

block of the main chain of G∗. By the assumption in the statement of
Lemma 3, lsb(B3) is a stable block of graph GB3 . Due to GB3 ⊆ G∗,

lsb(B3) is on the main chain of G∗, i.e., B1
b−→ lsb(B3). It contradicts

with the fact that lsb(B3) ∈ C(B0, B2) and C(B0, B2)
⋂

C(B0, B1) = Ø.

2) j = i: Since both B1 and B3 satisfy the condition (2) with respect to
B0, it follows by Lemma 2 that both lv(B3) < lv(B1) and lv(B1) <
lv(B3) hold, which is a contradiction.

Now we have shown that B0
b−→ lsb(B2). In addition, we have lsb(B2)

b−→
lsb

(
bp(B2)

)
by Proposition 1. Thus, B0

b−→ lsb
(
bp(B2)

)
holds. It follows

that h
(
lsb

(
bp(B2)

))
≤ h(B0). Since h(B0) ∈ Ii, there exists k ≤ i such that

h
(
lsb

(
bp(B2)

))
∈ Ik, which leads to ep(B2) = k ≤ i = ep(B1). It completes

the proof of Lemma 3.

Now we can prove the following main result of this section.

Theorem 1. For any block B1 in graph G, the last stable block of B1, i.e.,
lsb(B1) is a stable block of graph GB1.

Proof. We prove by induction. It is trivial for the case that B1 is the genesis
block. For the case ep(B1) = i, we assume that for any block B such that
ep(B) < i or B = bp(B1), lsb(B) is a stable block of GB. We will prove that
lsb(B1) is a stable block of graph GB1 .

We first show that for any block B0 such that B0 is a stable block of
GB1 , h(B0) ∈ Ii, and B1 satisfies the condition (2) with respect to B0, then
B0’s child in C(B0, B1), denoted by B∗

0 , is also a stable block of GB1 . It is
equivalent to show that B∗

0 is on the main chain of any graph G∗ such that
GB1 ⊆ G∗. We prove by contradiction. Assume there exists a graph G∗ such
that GB1 ⊆ G∗ and the main chain of G∗ does not contain B∗

0 . As depicted
in Fig. 5, let B2 denote the tip block of the main chain of G∗. Since B0
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Figure 5: The case where B∗
0 is not a stable block of GB1 . Solid and dashed

lines represent parent-child links and ancestor-descendant links, respectively.

is a stable block of GB1 and GB1 ⊆ G∗, the main chain of G∗ must contain

B0, i.e., B2
b−→ B0. Now we have C(B0, B2)

⋂
C(B0, B1) = Ø. It follows

that ep(B2) ≤ ep(B1) by Lemma 3. Furthermore, if ep(B2) = ep(B1) = i,
we have lv(B2) < lv(B1) by Lemma 2. Therefore, either ep(B2) < ep(B1)
or lv(B2) < lv(B1) when ep(B2) = ep(B1) holds, which implies that B1 is
better than B2 under block comparison rule R. It contradicts with the fact
that B2 is the tip block of the main chain of G∗ which contains both B1 and
B2.

We start with B0 = lsb
(
bp(B1)

)
. Since ep(B1) = i, we have h(B0) ∈ Ii.

In addition, B0 is a stable block of Gbp(B1) by our assumption. And since
Gbp(B1) ⊆ GB1 , B0 is also a stable block of GB1 . Thus, by the result we have
proved above, B0’s child in C(B0, B1), denoted by B∗

0 , is a stable block of
GB1 . We set B0 to be B∗

0 , and repeat this process until h(B0) /∈ Ii or B1

does not satisfy the condition (2) with respect to B0. The block we stop at,
i.e., the last stable block of B1 is a stable block of GB1 . It completes the
proof of Theorem 1.

4.3 Safety

Recall that the local graph node i observes at time t is denoted by Gi(t).
To determine the order of two blocks at time t, node i will first find the
stable main chain of Gi(t), i.e., SC

(
Gi(t)

)
, and then find out the order of

these two blocks by rule O in Section 2 given both of them have main chain
indices (defined in D12). Therefore, in order to show the safety property
of our consensus algorithm, it suffices to prove that the stable main chains
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different nodes observe at different time are consistent, which is stated in
the following Theorem 2.

Theorem 2. For any i, j ∈ N and ti, tj ≥ 0, we have either SC
(
Gi(ti)

)
⊆

SC
(
Gj(tj)

)
or SC

(
Gj(tj)

)
⊆ SC

(
Gi(ti)

)
.

Proof. Recall that SB
(
Gi(t)

)
denotes the tip block of the stable main chain

node i observes at time t. We first show that SB
(
Gi(t)

)
is a stable block of

graph Gi(t). In fact, by the definition of stable main chain in D11, SB
(
Gi(t)

)
can be represented as

SB
(
Gi(t)

)
= argmax

B∈Gi(t)
h
(
lsb(B)

)
. (17)

For any B ∈ Gi(t), let G
B
i (t) denote the induced graph which consists of all

blocks included by B. By Theorem 1, lsb(B) is a stable block of GB
i (t). For

any graph G∗ such that Gi(t) ⊆ G∗, we have GB
i (t) ⊆ Gi(t) ⊆ G∗. It follows

that lsb(B) is on the main chain of G∗. Thus, lsb(B) is a stable block of
Gi(t). Therefore, according to the definition in (17), SB

(
Gi(t)

)
is a stable

block of Gi(t).
In order to prove that either SC

(
Gi(ti)

)
⊆ SC

(
Gj(tj)

)
or SC

(
Gj(tj)

)
⊆

SC
(
Gi(ti)

)
holds, it is equivalent to show that SB

(
Gi(ti)

) b−→ SB
(
Gj(tj)

)
or

SB
(
Gj(tj)

) b−→ SB
(
Gi(ti)

)
. In fact, by Assumption A6, there exists some

time t∗j such that Gi(ti) ⊆ Gj(t
∗
j ). Let T = max{tj , t∗j}. We have both

Gi(ti) ⊆ Gj(T ) and Gj(tj) ⊆ Gj(T ). Since SB
(
Gi(ti)

)
is a stable block of

Gi(ti), it follows that SB
(
Gi(ti)

)
is on the main chain of Gj(T ). Similarly,

SB
(
Gj(tj)

)
is on the main chain of Gj(T ). Therefore, due to the uniqueness

of the main chain, we have either SB
(
Gi(ti)

) b−→ SB
(
Gj(tj)

)
or SB

(
Gj(tj)

) b−→
SB

(
Gi(ti)

)
. It completes the proof of Theorem 2.
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